ANTI-APOA-1 AUTO-ANTIBODIES ARE ACTIVE MEDIATORS OF ATHEROSCLEROTIC PLAQUE VULNERABILITY

Fabrizio Montecucco, Nicolas Vuilleumier, Sabrina Pagano, Sébastien Lenglet, Maria Bertolotto, Vincent Brauersreuther, Graziano Pelli, Enikő Kovari, Bianca Pane, Giovanni Spinella, Aldo Pende, Domenico Palombo, Franco Dallegri, François Mach, Pascale Roux-Lombard

Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, Geneva, Switzerland. Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland. First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Italy. Department of Psychiatry, Geneva School of Medicine, Geneva, Switzerland. Vascular and Endovascular Surgery Unit, Department of Surgery, San Martino Hospital, Genoa, Italy. Division of Immunology and Allergy, Department of Internal Medicine, Geneva University Hospital and University of Geneva, Switzerland.

Introduction: Anti-ApolipoproteinA-1 auto-antibodies (anti-ApoA-1 IgG) represent an emerging prognostic cardiovascular marker in patients with myocardial infarction or autoimmune diseases associated with high cardiovascular risk. The potential relationship between anti-ApoA-1 IgG and plaque vulnerability remains elusive. Thus, we aimed to investigate the role of anti-ApoA-1 IgG in plaque vulnerability.

Méthode: Potential relationship between anti-ApoA-1 IgG and features of cardiovascular vulnerability was explored both in vivo and in vitro. In vivo, we investigated anti-ApoA-1 IgG in patients with severe carotid stenosis (n=102) and in ApoE-/- mice infused with polyclonal anti-ApoA-1 IgG. In vitro, anti-ApoA-1 IgG effects were assessed on human primary macrophages, monocytes and neutrophils.

Résultats: Intraplaque collagen was decreased, while neutrophil and MMP-9 content was increased in anti-ApoA-1 IgG positive patients and anti-ApoA-1 IgG-treated mice as compared to corresponding controls. In mouse aortic roots (but not in abdominal aortas), treatment with anti-ApoA-1 IgG was associated with increased lesion size as compared to controls. In humans, serum anti-ApoA-1 IgG levels positively correlated with intraplaque macrophage, neutrophil and MMP-9 content, and inversely with collagen. In vitro, anti-ApoA-1 IgG increased macrophage release of CCL2, CXCL8 and MMP-9, as well as neutrophil migration towards TNF-alpha or CXCL8.

Conclusion: These results suggest that anti-ApoA-1 IgG might be associated with increased atherosclerotic plaque vulnerability in humans and mice.